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I. INTRODUCTION

“This report discusses the matching of rotor and stator flow in a transonic
compressor stage used for experimental measurement technique development. The
compressor is a small (11 inches in Jiameter), single stage axial machine with
a design stage oressure ratio of about 1.3 at 30,460 RPM (Fig. l). ~The JJesian
was completed in the late 1960°'s by Dr. M. Vavra. and is documented in Ref. 1.
The compressor does ot reflect wodav's state of <he art oOf nigh speed
compressor technology. It is, ’z‘owever,'./a .valulable tool to investigate
chenomena veculiar two transonic £lows such as shock systems and the losses
iccompanied witn them.

Initial testing, aimed at establishing the overall performance rap of his
compressor, revealed that the flow into the rotor was in disagreement with the
design. The flow rate at the #ull cpen throttle condition was too smalil and
the radial distribution of elocity 4id not match the rotor requirements. In
Fig. 2 the measured relative rotor inlet angle 8; and rotor incidence angle
versus radius are compared to +*he rotor requirements. The initial test data
was acqguired at 60% of design speed. Later measurements wers carried out “o

-,

speeds >f T0% of design and <he need #o improve +<he inlet €low field at low
speeds s“as clearly -lemonstrated, Rei. 2. It was Sound that the rotor inlet
flow angle was, Sor a constant throttle setting, independent of speed.
Attempts 0 improve +he rotcr flow were made oty modifing the inlet. However,
zalculations as well as nardware modifications showed that <he axisting inlet
flow (Fig. 2) oould oniy te changed slightly oy ariations upstream of +the
rotor leading edge. In order “c increase “he flow mate, a flow straightener
downstream 2f <he statcr was removed. This Ilow straightener (consisting <f a
honeycomb) was found to produce sizable losses and thus restrict the exit

1
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flow. An increase in flow rate was measured, however, the welocity

distribution at the rotor leading edge was mot changed significantly.
Consequently the role of the stator or the rotor-stator interaction was
2xamined rore thcrouchly in order to understand the IZlow field measured in the
2CMPrassor .

ZI. RCTCR - STATCR INTERACTICN

Attenmpts w improve -he rotor Ilow descriped in Ref. 2 dealt with *the
rotor Inflow cnly. Since the motor incidence angle was Sound to 2 constant,
odifying the inflow using various hardware changes seemed 0 be a logical
step. However, as *the improvements achieved were small, *he influence of -he
flow downstream oOrf -he oOtor on the rotor itself cecame the center of
attention. Tables I. through VI. show the radial distributions Of rotor and
stator and inlet angles. These measurements were +taken as different iniet
modifications were “ried. (Rer. 2) The design speed was 60% at the indicated
flow rates. In Fig. 3 the stator incidence angle is zlotted versus +the rotor
incidence angle for five streamiines (also see Tables I through VI). Data Sor
2ach c¢f +the radial surveys is connected with a curved line. Fer any of *<he
jiven streamiines <he relationship oTetween stator ind -otor incidence angle
zan oe :iosely approximated oy 1 straight ine. This <orrelation ~as ound o
oe independent of Zlow mate and madial distributicn of flow rate at *the rotor
inlet. Zertain distributions were Zorced oy using various iniet screens (see
fef. I). Consequently or ny Jiven rotor ncidence angle there will only oe
cne rrasponding stater ncidence angle. Close 0 the crigin >f <he
cooriinate system 'Fig. 3) 2 curved line indicates the relationship or
mnimm oss Licidence anale of coter and stator. The IHfference zetween he

minimum loss inciience and any teasured incidence indicates significant loss
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production. From the straight lines (Fig.3) representing various streamlines,

the necessary stator incidence angle corresponding to a minimum loss rotor
incidence angle and vice versa can be determined across the blade span. Fig.
4 shows that a stator operating at minimum loss incidence angle would require
the rotor to be stalled while a rotor minimum loss ccnfiguration would force
the stator to surge. Any rotor inflow modifications can anly twing about
changes otetween these limits shown in Fig. 4.

While the rotor approaches minimum loss incidence angle with increasing
flow rate, the stator improves with decreasing flow rate. Fig. 5 shows that
at 60% of design speed the stator static pressure recovery increases with
decreasing flow rate. 7To place the stator running conditions in the
perspective of the overall compressor performance, the stator incidence anagle
at mid chord is compared to compressor efficiency (Fig. 6) at 70% of design
speed. The conpressor peak efficiency occurs at a flow rate quite close to
the point where the stator is operating at minimum loss incidence angle. This
indicated that the influence of the stator incidence on the compressor should
be significant.

Althouch it was found that the rotor inflow was independent of wheel speed
at 60% speed, it was umportant “c Jetermine if the relaticnship found between
rotor and stator incidernce conditions found at this speed would be the same
at other speeds. For 70% of design speed the rotor and stator incidence angle
distributions were measured at various flow rates. At 68% of design speed the
rotor relative Mach number exceeds unity at the rotor tip. Beyond 0% the
relative Mach rmumber is already larger than the critical value. At these

conditions the wake shed from a probe immediately upstream of the leading edce

R L T T A, y MY e T e ¥ AN M o P T S e
NPT R M o R O I OGO ‘ Do)
W p Ny ANAY l 0,00, f‘a LA T N T aﬂn‘!!q'.lﬂ.h.!lq‘.h .f"!' v",'!“'l""‘!‘l ?'ﬂ.q .-'t.!.‘.'o DA AT f L o~ o

PN N R
A.'z'".'l, -\

i I 3

"y




1 Q)
']
)

PRI P

-

PRI S
1 P
B TN

-

A

a

b~ it

(station 1, Fig. 1) can cause severe flutter problems for the rotor blading.
To awvoid damaging the machine a computer program was developed, which
calculated the wvelocity vector at the rotor leading edge from measurements at
measuring station numper O (see Fig. 1). The incidence angle derived from +this
velocity vector differs only slichtly from the value neasured at station 1.
for inlet configuraticns without any screens or other modifications the rotor
and stator nlets were surveyed at 50 and 70% of desian speed at “he open and
closed throttle setzings. Taples VII “hrough X show the results, which are
plotted on Tig 7. Figure 7 shows that for a full open throttle configuration
the curves of stator incidence versus rotor incidence are practically the same
for =2ither 40 or 0% =f Jdesian speed. Ttor throttled conditicns there are
slight differences, prooably tecause the throttle setting was not axactly the
same for toth speeds. The data of all four curves can be represented by
straight lines for individual streamlines. Only the flow rate chances with
these curves. The compressor speed has no influence. In Fig. 8 the radial
distributions of rotor and stator incidence angle are shown for two throttle
settings at 70% of design speed. At the maxirmm flow rate (open throttle) the
stator incidence is apout -16° at the tip and negative over the whole blade
span. fcr <his munning -ondition the rotwer cocmes closest “o the minimim 0SS
incidence angle; the desired cperating regime. However, the stator will e
approaching surge and will generate a significant amount of blockage downstream

of <he rmoctor. Since it was <clearly demcnstrated that any irmprovement <o +he

roror flow would make <hings worse for the stator, the stator was removed.




~ III. COMPARISON CF ROTOR (NLY AND STAGE DATA

N

e The stator was manufactured as a single piece rather than an assembly of a
Y

. disk and blades (see Fig. 1l). In arder not to disturb the flow at the hub,

. the stator ~as replaced ov an 2luminum ring with a contour identical <o zhe

stazor huc. This ring ontalned <“he same statlic oressursa tappings as <he

v

. orrginal stitlr nup. he Ilow stralantener honeveomo! shown in Fig. 1 mad

-~

irea CITIC ITenween =2¥naust IICsSs-secticn ind Totor outiert s J.3Z2. Jue Coi

“~
Deen reroves zar.ier.  hus “he swlrl Ireated wn <he flow ov the rotor .as ot
- removed, fta2r “he Ilow leaves —ne OMpressor stage (Iormmer =nd Jr Zlow
A8

straicntener;, .t s rturmed 07 and exhausted radiaily. Withain the exhaust,
-
there ~ere aicht strits made > J.05 incn diameter 2oits with rfalrincs. The

IorrespCndling reducticn in axial elocity, the swirl angle in <he 2xhaust s

1@

tween 10° and 15°, Zepending upon spanwise locaticn. Since the st-uts could
: nct 2e adtustad o his angle, thev were lert masallgned <o the Zlow v zhat
A

__ arount. The misalimment was considered to pbe small since the struts occupled
- only #.2% of the total =xhaust area.

_:‘ The total pressura/terperature propes of “he stage outlet rake at

’ Teasuring staticn nuamber I owere adousted two the flow angle determined w1zn an
R, "

’ angie orcoe. I2r the Zlow rate rance <xamlned, the nstrumentaction -iid ot

v

]

need 0 ke acdiusted Surther. The remcval of the stator required the

R I

disassemcly of most of the %est wehicle. Zarlier tests had shown it c e

Soe
PR
v %

an omprovement o odify the rotor spinner -0 a strictly conmical shape (Rer.

s - .. L . . . . .

z). Thnis ilisassemcly was used ‘0 alter the existing splnner to the shape
. — E - - 3 « - . .

N shcwn n Zig. 2. due w the forward extension oceveond -he original spinner
- “ip, <he Traversing distance of the compinaticn pneuratic, temperaturs -robe it
\ -

- szation - had <o e reduced. Otherwise o further modifications of the
as
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instrumentation hardware or software were necessary.

III.1. Overall Performance

Since it was found that the rotor operates closest to minimum loss
incidence at full open throttle, the compressor map was not measured. For
speeds S-om 25% to T0% the pverZormance was measured at small increments of
speed at open throttle. This data and performance map data of the stage
acquired earlier is shown in tables XI %o XIV. Fig 10 shows an appropriate
comparison. For the stage configuration the speed lines of 60% and 70% of
design speed are shown as well as the maximum flow rate line for speeds Zrom
25% to 70%. The latter can re directly —~ompared 0 the maximum flow rate line
Zor the wotor only confiquration. This shows that the wtal oressure rise
oroduced oy the rotor alone is slightly lower than the stage at the same
speed, however the referred flow rate is hicher. At the same time the overall
efficiency is higher for the rotor only configuration. The total +emperature
increase is smaller for the rotor anly (Fig. 11), which appears to be the
primary reason for the increase in efficency. For any given speed the
referred flow rate of the rotor alone is larger than the stage flow rate.

This indicated, *hat -he stator in fact generated ircreased Iownstraam
blockage at pen throttie.

III. 2. Rotor In- and Jutflow

The goal of removing the stator was to improve +he rotor flow.
Consequently the rotor in- and outZlow were measured and Jompare:l ~ith -he
stace data. Radial surveys were “aken at measuring stations J upstream)
and station 2 (downstream of the rotor) (Fig. l). Fig. l2a shows zhe
absolute Mach number distribution. Although an overall increase in flow rate

was measured, the increase 1n inlet Mach mumber shown i1s musle=ading. The

-~ e




change of the spinner increased the hub radius at station 0. This represented
an area reduction at that axial location of 3.3%, which partially led to the
increase in Mach number shown. At the rotor cutlet (station 2) the radial
distribution of the absolute Mach rumber did not vary, while the level dropped
slightly. The absolute flow angle (Fig. 12b) shows basically mo change
petween stace and the rotor anly measurement. At staticn C there was a smali
jeviation in absolute angle near the hub Sor the rotor anly conrfiguration.
This cannct 2e attributed w™ preswirl due to the changed spinner gJeomet:y,
since preswirl would produce a flow deflection in the opposite direction., It
had to be assumed that there was a measurement error. Changes at measuring
station 2 were Imail. The disagreement with the design values did mot
improve. The £flow pitch angles at stations O and 2 are shown in Fig. 1l2c.

At the inlet (station 0) the pitch angle was slightly larger in a stage
configuration than for the rotcr only. Near the hub spinner, pitch ancle is
hicher in the rotcr only measurement while the pitch angle decreases towaris
0° (the free stream value) for the stage configuration. No significant
variations were found in the rotor cutlet pitch angle distribution.

From the measured rotor inlet wvelocity vector and the rotational speed one
can derive the incidence angle zo the rotcr. In Fig. 13, the rower incadence
angle for the rotor alone and the stage are comparecd. Due to the increased
flow rate the rotor anly configuration has lower incidence angles across the
olade span. For a substantial center portion the measured incidence angie
closely matches the value for minmimum loss.

The hub to tip distribution cf incidence angle did mot change with the

removal of the stator.
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IV. ROTOR ONLY COMPARISON OF TEST RESULTS AND CALCULATIONS

Far an open throttle, highest flow rate configuration, the radial
distributions of welocity wvector at rotor in - and cutlet were measured at 70%
of desian speed (Fig. l4a-c). CQualitatively the distributions of absolute
Mach mumber, yaw and pitch angle are the same as those for 60%, cnly the
level of Mach mumber 1s increased. In arder to have some means to derive
total pressure losses across the rotor, the radial distributions of total
pressure and temperature were measured at rotor in- and cutlet (Fig. 15a,
15b). While the total temperature rise is fairly uniform across the blade
span, the total pressure increase for the tip is small compared to the hub.
These trends are reflected in the fotal pressure loss coefficient (Fig. 15c).

To evaluate the reasurements further, a 2-D finite element computer code
was used to calculate the rotor flow for the same running conditions. The
code utilized was developed by Hirsch and is described in Ref. 3 and Ref.

4. The meridional mesh used in the calculation is shown in Fig. 16. The
station lines (hub to tip) are arranged such that line rnumber 3 criginates at
the spinner tip, number S5 and rnumber 8 coincide with the measuring stations
rumber O and 1 respectively for radial surveys of the inlet. Number 9
represents the rotor leading edge and numper 12 the trailing edge. Station
line umoer 13 is identical to measuring station muber 2, for radial surveys
of the rotor autlet. The up- and downstream extensions of the mesh reach
points where the duct cross—-sectional areas remain constant. Inlet conditions
such as flow rate, rotor speed, pressures and temperatures were taken from
measurements at 70% of design speed. The results given by the computer code

are very extensive and only a few are presented. The caiculated flow angle

(Fig. 17) is in good agreement with the measurement for rotor in-and outflow.
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Disagreement towards the tip at measuring station 2, calculation station 13 is
likely to be a probe error. The probe is retracted into a 0.25" diameter
hole, leaving a gap between the probe itself and the cutside of the hole.
Furthermore, mot all sensors are located at the same radial vosition, so *hat
some might already be retracted while others are still expcsed to the flow.
The combination of *hese effects causes inaccuracies in measurements in the
immediate vicinitvy of the wall. In Tig. 18 *he welocity in +the absolute Zrame
is compared for various axial stations. The aareement is good everywhere.
Test data olotted at calculating station mumber 9 has teen calculated from
measurements at measurement station mumber 0. In arder to svaluate +the whole
velocity vector, the various components of the absolute total welocity (Fig.
18) were compared. while the agreement of the axial component is good
throuchout (Fig. 19), large discrepancies appear to exist for the radial
component of the rotor cutlet. dHere, however, the representation of the three
dirensional velocity vector in terms of its components rather than magnitude
and angles, is misleading. 1In fact, if one neglects discrepancies in the

tip region, the largest difference in radial velocity component of about 12
m/s at 32% blade span, represents an =rror in pitch angle of 3° less than
everywhere else. Although ot a negligibie difference, an explanation was
not readily available. For measuring station mumber O/calculation station
number 5, the error in pitch angle in the hub area is rather large. The
maximm difference bpetween 12° measured and 21° calculated at 20% span can
only e accounted for oy the substantial area change at calculation station
numpoer 3; this might have caused a oroblem in the calculation. The
tangential “elocity component (Fig. 21) is in good agreement for the lower 80%

of the span at the rotor cutlet. The disagreement in the upper 20% cannot be
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attributed to probe error alone, since these only occcur within 10% fram the

: 7o

casewall. At 75% span the calculated absolute velocity shows only a small

-y

increase, while the absolute flow angle increases for that location. This

X

oA s SLN L

could pe the reason that the tangential velocity component increases. From
the measured absolute flow angle (Fig. 17) and velocity (Fig. 18), the 1

relative flow angle at rotor in-and outlet were calculated and ccmpared to

“hose derived from the throuanflow calculation (Fig. 22). Except for the hub

and tip area the agreement is good. Another parameter that was important in

the calculation of profile losses is the relative Mach mumber. It was derived

hub-to-tip for in-and outlet frcm measurements and compared to calculation

2L

results (Fig. 23). The agreement at the rotor leading edge is very @ood. For

the outer 30% of the blade span the Mach mumber is larger than the critical

value and reaches unity at the tip of the blade. The largest discrepancy in
the cutlet relative Mach rumber is 5% near the hub (Fig. 23). The measured
cualitactive behavior, however, is well predicted.

The combination probes resolve mot only the velocity wvector, but total

PSRN

- SR

vressure and total temperature as well. These quantities are needed to
calculate +he rotor losses. The inlet conditions are identical Zor

) measurement and calculation, Jue *he measured data being used as the input Sor
: the caiculation. Fig. 24 shows the total pressure at rotor in- and cutlet.

s The measured increase in total pressure across the rotor is up to 12% less

, +han the calculated -ne. In “he tip region the discrepancy is rather large.
Here the discontinulty in the calculation results moted earlier might be at
fault.

) In comparing the outlet total temperature (Fig. 25), cne motes that the

M measured data points are scattered about the calculated values. The mass
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averaged value of all single measurements however is close to the average

value of the calculation. In earlier measurements it was found, that the
temperature of the ambient air fluctuates as much as 2°C within short time
pericds. To avoid an influence of this phencmena on compressor measurements,
the temperature differential across the rotor is measured rather than the
absolute readings of in-and cutlet. This procedure makes the temperature
ievel of the incoming air unimportant. In fig. 25 however, the actual values -
Or the measured cutlet wotal temperature are compared. They exnibit the
magnitude of possible variations due to changes in ambient conditions. From
the measured total pressures and total temperatures the rotor loss (hub to
=ip) was calculated (Fig. 26). The comparison with calculation results
reflects the disagreement found in the total pressure (Fig. 24). Calculation
as well as measurement show a distinct increase in losses towards the tip (80%
span and larger). This is assumed to reflect the shock losses, which should
be present at those radii due to the high relative inlet Mach rumber (Fig.
23).

V. CONCLUSION

The interdependence of rotor and stator flow of a transonic compressor was
investigated. Starting from che odbservation that neither blade row was
operating close to minimum loss conditions for any compressor speed and flow
rate, it was found that for a wide array of rotor inlet conditions the
dependence cetween rotor and stator flow followed a very distinct pattern.
Cranges of radial distributions of the inflow, generated by par=ial blockage,
did rot affect the relationship between rotor and stator flow for given
streamlines. Since the rotor's optimum flow condition required the stator to

ve off-design and vice versa, the stator was removed so that the rotor could

11
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operate without downstream blockage generated by the stator. Interestingly,
the increase in flow rate dbserved was slight and changes in the rotor flow
were moderate.

The flow of the rotor itself was compared with the calculation of a finite
element computer program. The trogram was ound to closely predict the

measured flow.
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Figure 3. Stator incidence angle vs rotor incidence angle at
60% of design speed.
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Figure 19. Comparison of measured and calculated axial velocity
. component vs blade span at 70% of design speed.
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Figure 20. Comparison of measured and calculated radial velocity
component vs blade span at 70% of design speed.
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COMPARISON CF ROTOR AND STATOR INCIDENCE ANGLE

Table I. Data from file T95608 - No honeycomb, large screen, 60% of design
speed
b - Rotor Stator
’ Am 3 . . ]
= | o= A R BT - R B
o I N T S P A IS S T 1 A
i l | ! ! ! i | |
A ! i ; i z ; 3
| 0.2 | 0.2 | 45.06 | 16.31 | 5.0 | 28.0 | 11.34 ; 38.07 | =-3.00
‘ D.3¢ 1 85.2 1 33.94 . 11.36 | 3.7 1| 29.0 ¢ 12.38 | 40.%4 -3.55
- D.75 ] 85.4 | 38.76 I T.04 1 .6 | 4.2 12.37 ¢ #4.21 | -i0.78
- 0.875 1 ws4.3 1 60.27 1 5.71 0 2.0 f] 21.9 | 13.21 | 36.68 | -i4.85
" 1,000 1 %6.4 ;0 39.33 ) 4.71 F 4.1 || 28.0 14.50 | 55.60 | -14.20
o
o~ Table II. Data from file T25707 - No honevcomd, no screen, full open throt:zle,
& 50% of lesign speed
‘-J.
o _ ctor Stator
e 0 | 2 1 v i | 3 ) ' - i . i :
N T IS G AL | N T A A T B
» =2 | 2 1 21 | °3 100 N I T R €3] £°]
o 1 | | |
- , , . ‘ : !
<. | | i i
% .25 | 37.0 45.C6 ‘ 16.31 3.70 26.5 | 11.94 | 38.07 | —1.48
A 0.0 | 80.2 53.94 | 11.36 0.00 || 24.2 | 12.38 | 40.94 | -3.65
- 0.75 | 83.3 | 38.76 | 7.04 | 1.55 22.1 12.37 | 44.21 | -12.38
", 0.875 | 83.0 , 60.27 | 5.71 2.75 21.3 13.21 | 46.88 | -13.25
[ 1.000 | 6.9 | 59.83 | 4.71 4.55 || 30.9 | 14.50 | 55.60 | -11.40
X~
1S
o Tarie II. Zata Zrom Iile 195714 - b 'wneycomb, no screen, sligntly shrottled,
*‘: 0% of design speed
3" . fotor Stator
i :2- 3 v ! > ' i ag E Y > i i
: |
7 £-1 S T s A IR N B ! o1 ohe
Vad | | ! i ! !
0 , ‘ . . ,
i i [ ‘ ; !
3; J.25 | 38.3 | 45.06 | 16.31 | 5.09 || 30.3 | 11.94 | 38.07 ; -3.48
y 0.30 61.7 | 33.04 | 11.36 | 1.98 28.3 12.38 | 40.%4 ’ -4.35
, 0.75 ’ 64.7 | 38.76 | 7.04 | 2.42 || 2.0 l 12.87 | 44.21 | -3.98
7 0.875 65.6 60.27 | 5.7 2.48 25.3 | 13.21 | 46.68 | -11.29
-5 1.000 68.1 59.83 | 4.71 | 5.92 37.5 | 14.50 | 55.60 | =1.30
-7
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Table IV. Data from file 792402 -~ Old bellmouth, mo screen, honeycomb,
slightly throttle, 60% of design speed

. Rotor Stator
Am .
AR A R N R R B
=1 | [°3 £°] (! el £°] £l c1 | C°3
| l
9.25 ! 63.1 15.06 | 16.31 9.9 34.40 | 11.94 ! 38.C 3.97
0.50 | 6.2 53.94 | 1il.36 6.5 32.00 | 12.38 | 40.94 | -0.65
0.5 | 358.9 38.76 7.4 6.6 29.34 | 12.87 | +4.21 | -5.64
0.875 | 70.3 50.27 5.71 7.7 28.00 | 13.21 | 46.58 | -3.3
1.000 | 73.5 | 359.33 4.71 | 1.3 |] 37.00 | i4.50 | 55.60 | =3.30

Tapie V. Data from file T92504 - Old vellmouth, o screen, honeycomp hishly
throttled, 60% of design speed

. Riejdelq Stator

e | _;1 " . ' | ! ) :

S S A AT B | T SRS B N

-1 £°3 c°] °] C°] C*] ] £°3 [°]
C.25 b 67.9 45.06 16.31 14.70 41.7 11.94 | 38.07 | -10.73
0.30 69.5 53.94 11.56 9.78 39.8 12.38 | 40.94 6.95
0.75 70.4 58.76 7.04 8.12 37.0 12.87 | 44.21 2.03
0.375 71.9 60.27 5.71 8.78 35.9 13.21 | 46.68 -0.65
1.000 73.7 59.83 4.71 11.52 44.0 14.50 | 55.60 -1.70

Taple VI. DZata from file T9581l1 - No honeycomb, small screen, open throttle,
60% of design speed

. Rotor Stator
= GO A T AR | N RS BN B
-] (°] £°3 °] ! £°1 (°] ! *]
! t I |

G5.25 55.8 45.06 6.3 2.7 26.3 11.94 38.07 -4.08
0.30 03.3 53.94 il.36 4.1 26.7 12.38 | 40.94 -9.15
0.75 4.9 58.76 7.04 2.75 23.8 12.87 | #4.21 | -11.18
0.875 4.6 60.27 5.71 2.25 22.0 13.21 | 46.68 | -14.55
1.000 66.0 59.83 4.71 1.65 31.9 14.50 | 55.60 | -10.40
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Table VII. Calculation of stator incidence angle (T95907) 60% of design
speed, open throttle

- R2 . L
3 H ’ 5 ‘ a2 Y | o i design i
-1 -1 | =1 | 3 1 | C°] £°] =1
l ! l
| l l
1 2.300 | 2.635 | 27.20 | 11.368 | 34.900 | -1.99 | -0.788
2 0.260 | 0.730 | 25.37 | 11.940 f 38.069 | -5..0 | =1.300
3 5.520 1 0.325 | 22.5¢ | 12.380 ! 40.935 ! -10.35 | -2.200
4 0.756 | 0.211 | 20.40 | 12.866 | 44.207 | -14.57 | =3.000
5 9.378 | 9.255 | 20.30 | 13.209 | 46.681 | -16.05 | =3.000
5 | 1.000 | 1.000 | 27.00 | 14.498 | 55.603 | -15.30 |  0.000
Rotor
am R1
] F r | 1
-] i (-1 -] £°]
|
1 0.000 0.5000 3.55
2 0.250 0.6614 2.40
3 0.500 0.7906 -0.90
4+ 1 0.7 ).9014 1.10
31 2.375 3.3520 1.73
5 | 1.000 1.0000 2.30
e
2
N
»
4
\: 40
L]
D »
[ ]




TETET T TN T T VTV,

v

0
AR

Ey

Table VIII. Calculation of stator incidence angle (T95924) 60% of design,
speed, closed throttle

o
>

TR

K
. 2 q R2 a i design i
; | T 2 vl =

s R S I L S TS A A T R
i ! | ! :

':."‘ . | _ : ! ( ' -

NG . 3.000  2.835  39.60 | 1l.368 ! 34.200 | 10.60 | -3.738
) 2 0.260 - ).730 1 37.54 1 11.940 | 38.069 | 6.36 | -1.200
N : 3.320 .325 0 35.23 1 12.280 ¢ 40.935 | 2.48 ! -2.200
Y = 3.736 .01l 33.35 ¢ 12.366 | 4.207 | ~-i.12 | =1.000
% 3 3.378 | .255 33.30 ! 13,209 1 46.881 | -3.05 1 -3.000
L 5 1.000  1.000 43.60 ¢ 14.-98 ! 35.603 | 1.30 |  2.000
WY

S

[\

:"’)-f
!

0

".h

RN

\\ Retor

o
"t

P o = 1

I i
= aqual
h o tod

r

'

NGE

,_
[
|

0.000 0.5000
2.250 . 0.6614
2.300 . 0.7906

0.750 | 0.9014

C0.375% | 9.9520

~.000 . 1.0000

8.28
6.75
4.39
.32
5.6
5.00
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Table IX. Calculation of stator incidence angle (T96013) 70% of design
speed, open throttle

# ' H ’ g% ‘ ay Y ¢ i design i
S e °1 ‘ ! °] l !
1 ! 2.000 | 2.835 | 6.60 | 11.568 | 34.900 ' -2.30 ' -3.788
2§ 0.260 . 0.730 | 25.05 ! 1l.%40 | 38.069 : -5.93 ' -1.200
3 1 0.520 | 0.825 | 22.91 | 12.380 | 4C.933 | -2.94  -2.200
+ | 9.7%6 | 0.911 ! 21.30 | 12.366 i 44.207 | -13.47  =3.300
3 0 0.878 | 0.955 : 20.73 | 13.209 { 16.681 | -i5.76 | -3.000
5 | 1.000 | 1.000 | 26.00 | 14.498 | 35.803 | -16.30 .  1.000
|
|
Rotor f
% A equal A ! i ‘
’ o wd ! 0 : -
ST B | -] IS
[ i
[ i |
S 0.000 0.5000 ! 3.53
> | 0.250 0.6614 | 2.89
3 0.300 ! 0.7906 | 1.15
1 1.720 | J.2014 | L.2
3 2.375 ! 0.9520 . .22
5 £.200 i 1.0000 ¢ 2.30
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Table X. Calculation of stator incidence angle (T96023) 70% of design speed,
closed throttle
# H % ay Y ¢ i design i
-] -] -3 [°] °1 | 3 [°] [-*3
1 0.000 | 0.435 40.00 11.568 | 34.90 11.00 -2.788
2 9.260 | 0.730 40.25 11.940 38.069 9.28 -1.300
3 0.520 | 0.325 37.72 12.380 | 40.935 4.87 -2.200
<4 Q.756 0.211 36.00 12.866 | 44.207 1.03 =3.000
3 0.378 | 0.355 35.95 13.209 | 46.681 | -0.60 -3.000
6 1.000 1.300 +4.00 14.498 | 55.603 1.70 0.000
Rotor
# am RL i
= 2 RO

(-] -1 (-] 1

1 0.000 0.5000 9.45

2 0.250 0.6614 6.93

3 0.500 0.7906 4.99

4 0.750 0.9014 4.95

5 0.875 0.9520 - 5.42

o 1.000 1.0000 6.30
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Table XI. Stage full open throttle line

"

L.

o

l\ .

bl NN l Mref n Nis é_Tt

ref t

. S C1bs/s) (-] (-] -}

|

N 0.247 | 5.644 1.021 0.834 0.0073
5 0.295 | 6.609 1.030 N/A N/A

> 0.326 | 7.224 1.039 0.856 0.0128
i 0.400 i 8.708 1.057 ‘ 0.865 0.0187
e 0.494 | 10.888 1.093 | 0.372 0.0297
e 0.5%0 | 12.850 1.137 | 0.878 0.04267
. 0.623 | 13.500 1.150 | 0.358 0.0477
e 0.65% 14.242 1.170 0.868 0.0530
+ 0.683 14.854 1.185 0.860 0.0579
v

L
: j Table {II. Stage, 60% of design speed line
g3

5 N Mref v Nis %I_'t

-~ “ref +t1
o -1 [ibs/s] -] (-1 (-]
o

N 0.598 12.986 1.141 0.875 0.044150
e 0.599 13.187 1.141 0.867 0.044509
ﬂ* 0.597 13.073 1.144 0.876 0.044796
) 0.597 13.038 1.149 0.886 0.045820
1o 0.601 12.882 1.153 0.878 0.047344
3} 0.598 12.791 1.156 0.880 0.048176
R 0.598 12.784 1.162 0.887 0.049713
D C.600 12.502 1.162 0.878 | 0.052158
e 0.598 | 12.411 1.176 0.891 0.053385
o 3.800 | £2.250 1.183 0.901 0.054873
s 2.600 12.064 1.188 0.399 0.056233
Ih 0.397 11.797 1.192 0.896 0.057650
iy 0.596 11.758 1.198 0.911 0.058433
® 0.596 11.631 1.202 0.913 0.059349
s 0.596 11.366 1.204 0.869 0.062835
e 0.600 11.005 1.217 0.915 0.063295
¢ 0.597 10.784 1.219 0.904 0.064592
> 0.399 | 11.293 | 1.211 |  0.92c | 0.061215
@
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b Table XIII. Stage, 70% of design speed line

3\‘

N .

b N Mref n Nis ATy

) Nref . - Tel

) - [lbs/s] -3 | (-3 -2
e g ; .

Wy 2.390 . 14.95 1201 1 0.873 | 0.06159
-y 7.630 14.32 1.212 | 0.873 . 0.06432

- 3.688 14.58 1.225 | 0.395 | 0.06681
‘ J.690 | 14.30 1.237 | 0.897 | 0.07010
"l 0.689 14.153 1.247 | 0.204 I 0.07218

.. 2.890 14.053 1.257 1 0.211 L 0.07943
3 J.690 ! 13.723 1.266 | 0.915 | 0.07640
e 3.690 13.542 L 1.278 0.917 L 0.07950

o] J.691 12.322 P 1,205 1 0.216 ' 0.08152

0.690 13.168 | 1.294 | 0.921 P 0.08320

A 0.6%0 ! 12.850 i 1.201 | 9.923 | 02.08504
o

o

o Taple IV. Rotor only Zull open throtzle line

C

e

" ‘ '.\I | Teof T i nig : AT

5 Tef | L T =

T t—l Libs/s] L= L= ‘ .=

{ 0.248 % 5.491 1.021 H 0.793 0.0077
e 3.295 | 6.733 1.030 | 0.820 3.0105

b 0.329 | 7.33% 1.039 |  0.852 0.0130
v 0.395 | 8.308 1.058 | 0.886 0.0184

:3; 0.493 | 10.270 . 1.093 | 0.913 0.0282
s 0.324 11.550 1.105 | 0.907 0.0321
) C.336 | 12.300 1.120 | 0.916 . | 0.0361

120 3.389 13..70 L L1330 | 0.913 | 0.0389
~ 3.390 13.050 L34 D.918 1 D.0401
- J.820 13.750 L L.148 0.927 | 2.0436
" 3.654 | 14.480 . 1.166 0.926 | 0.0487
= 0.687 | 15.120 | 1.181 | 0.904 | 0.0539
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